X

Download Tree Biology PowerPoint Presentation

SlidesFinder-Advertising-Design.jpg

Login   OR  Register
X


Iframe embed code :



Presentation url :

Home / Forest & Animals / Forest & Animals Presentations / Tree Biology PowerPoint Presentation

Tree Biology PowerPoint Presentation

Ppt Presentation Embed Code   Zoom Ppt Presentation

PowerPoint is the world's most popular presentation software which can let you create professional Tree Biology powerpoint presentation easily and in no time. This helps you give your presentation on Tree Biology in a conference, a school lecture, a business proposal, in a webinar and business and professional representations.

The uploader spent his/her valuable time to create this Tree Biology powerpoint presentation slides, to share his/her useful content with the world. This ppt presentation uploaded by onlinesearch in Forest & Animals ppt presentation category is available for free download,and can be used according to your industries like finance, marketing, education, health and many more.

About This Presentation

Tree Biology Presentation Transcript

Slide 1 - Tree Biology By Dr. Ed Gilman and Scott Jones University of Florida
Slide 2 - An Outline: What is tree biology? What makes a plant a tree? Secondary Growth! Summary. What does it all mean?
Slide 3 - What is tree biology? The study of the Life Processes of a tree. That includes a study of the GROWTH, STRUCTURE, EVOLUTION, etc. of a tree.
Slide 4 - Life processes – some examples: photosynthesis – a tree’s gotta eat! support mycorrhizal interactions
Slide 5 - What makes a plant a tree? Like other plants: Trees are autotrophs - meaning they produce their own food. Tree cells have rigid cell walls, a large central vacuole, and chloroplasts. The difference is Secondary Growth!
Slide 6 - Secondary Growth means Wood! Trees and shrubs grow radially as well as vertically. (The difference between trees and shrubs is size.)
Slide 7 - Our secondary growth model: A typical hardwood tree in cross section (transverse surface). What can you identify?
Slide 8 - The Bark: The bark is everything outside the vascular cambium. As you can see, there is a lot going on in the bark.
Slide 9 - The Bark: periderm: Periderms form the outer bark. They are subdivided further.
Slide 10 - The Bark: periderm: phellogen (cork cambium): The phellogen is the region of cell division that forms the periderm tissues. Phellogen development influences bark appearance.
Slide 11 - The Bark: periderm: phellem (cork): Phellem replaces the epidermis as the tree increases in girth. Photosynthesis can take place in some trees both through the phellem and in fissures.
Slide 12 - The Bark: periderm: phelloderm: Phelloderm is active parenchyma tissue. Parenchyma cells can be used for storage, photosynthesis, defense, and even cell division!
Slide 13 - The Bark: phloem: Phloem tissue makes up the inner bark. However, it is vascular tissue formed from the vascular cambium.
Slide 14 - The Bark: phloem: sieve tube elements: Sieve tube elements actively transport photosynthates down the stem. Conifers have sieve cells instead.
Slide 15 - The Bark: phloem: companion cells: Companion cells provide sieve tube elements with needed metabolites. Conifers have albuminous cells instead.
Slide 16 - The cambium: The cambium is the primary meristem producing radial growth. It forms the phloem & xylem.
Slide 17 - The Xylem (wood): The xylem includes everything inside the vascular cambium.
Slide 18 - The Xylem: a growth increment (ring): The rings seen in many trees represent one growth increment. Growth rings provide the texture seen in wood.
Slide 19 - The Xylem: tracheids: Tracheids are cells used for conducting water & minerals. Conifers only have tracheids and are thus considered softwooded species.
Slide 20 - The Xylem: vessel elements: Hardwood species have vessel elements in addition to trachieds. Notice their location in the growth rings of this tree
Slide 21 - The Xylem: fibers: Fibers are cells with heavily lignified walls making them stiff. Many fibers in sapwood are alive at maturity and can be used for storage.
Slide 22 - The Xylem: axial parenchyma: Axial parenchyma is living tissue! Remember that parenchyma cells can be used for storage and cell division.
Slide 23 - The Xylem: rays (multiserrate & uniserrate): Rays are radial parenchyma cells. Parenchyma cells give rise to adventitious tissues.
Slide 24 - The Xylem: a natural compartment: Notice that a natural compartment is formed with living tissue at its borders. How does this support the CODIT model?
Slide 25 - The Symplast: The symplast is the living portion of the tree. It is all connected via plasmodesmata (tiny passages in the cell walls.)
Slide 26 - The Apoplast: The apoplast is the nonliving portion of the tree. The outer bark is included in the apoplast as well
Slide 27 - What about heartwood? Heartwood is xylem that has been chemically altered because of its age. Not all discolored wood is considered heartwood! Not all trees form heartwood. Heartwood is part of the apoplast.
Slide 28 - Summary Periderm (Bark) Phellogen Phellem (cork) Phelloderm Phloem (Bark) Sieve tube elements [sieve cells] Companion cells [albuminous cells]
Slide 29 - Summary Vascular Cambium Xylem (wood) Trachieds Vessel elements (hardwoods only) Fibers Axial parenchyma Rays
Slide 30 - Summary Symplast – the living Apoplast – the dead Growth increment – rings Natural compartment – CODIT
Slide 31 - What does it all mean? Trees can live longer than other plants. They can get bigger than other plants. They can respond to damage, disease, insects, and environmental conditions successfully. Trees are a long term investment.