X

Download Antiseptic solution in Operating theatre PowerPoint Presentation

SlidesFinder-Advertising-Design.jpg

Login   OR  Register
X


Iframe embed code :



Presentation url :

Home / Health & Wellness / Health & Wellness Presentations / Antiseptic solution in Operating theatre PowerPoint Presentation

Antiseptic solution in Operating theatre PowerPoint Presentation

Ppt Presentation Embed Code   Zoom Ppt Presentation

PowerPoint is the world's most popular presentation software which can let you create professional Antiseptic solution in Operating theatre powerpoint presentation easily and in no time. This helps you give your presentation on Antiseptic solution in Operating theatre in a conference, a school lecture, a business proposal, in a webinar and business and professional representations.

The uploader spent his/her valuable time to create this Antiseptic solution in Operating theatre powerpoint presentation slides, to share his/her useful content with the world. This ppt presentation uploaded by slidesfinder in Health & Wellness ppt presentation category is available for free download,and can be used according to your industries like finance, marketing, education, health and many more.

About This Presentation

Slide 1 - Antiseptic solution in Operating theatre Patricia Kan
Slide 2 - Antiseptic solutions in operating theatre
Slide 3 - Joseph Lister (1827-1912) Hospitalism: outcomes of pyaemia, septicaemia, erysipelas, hospital gangrene and tetanus One of the giants of infection control Laid down the principles of antisepsis in surgery In late 1800s, he started to use carbolic acid to clean the operation site before incision.
Slide 4 - Topical antiseptic solution in OT 1. Preoperative skin preparation 2. Regional anaesthesia (epidural, spinal, etc) 3. Central line insertion 4. Hand hygiene
Slide 5 - Topical antiseptic are antimicrobial agents that kill, inhibit or reduce the no. of microorganisms on the skin. Human skin is colonized by a wide variety of microorganisms that may provide a protective mechanism to the host, but also a source of infection.
Slide 6 - Normal skin flora Transient: contracted from the environment or from other people thrive in the environment of sweat, dirt and oil can be easily removed by soap and water. Resident: live in the skin pores and stratum corneum continually work towards the skin surface Difficult to remove and require antimicrobial agents with residual action to be effective
Slide 7 - Topical antiseptic are active against both resident and transient flora by both mechanical and chemical action. Apply enough pressure and friction to remove dirt, debris and microbes. (except superficial malignancy, areas of carotid plaque) Common antiseptics: Alcohol, Iodine and iodophors, Chlorhexidine
Slide 8 - Alcohol Protein coagulation and denaturation Alcohol-mediated disruption of cytoplasmic integrity, cell lysis and interference with cellular metabolism 100% alcohol is not effective it deprives bacterial cell walls of water induce the formation of impermeable protein layers which prevent the alcohol from penetrating in to the cell
Slide 9 - Alcohol is defined by FDA as having one of the following active ingredients: Ethyl alcohol, 60-95% by volume in aqueous solution Isopropyl alcohol, 50-91.3% by volume in aqueous solution Most common concentration: 70% Effective, less dessicating, less expensive
Slide 10 - Advantages Onset of action is most rapid, 10-15 sec Broad antimicrobial spectrum: Excellent bactericidal effect on G+, G- Effective against tubercle bacillus, fungi and virus (certain enveloped viruses: HSV, HIV, influenza virus, RSV) Not sporicidal, poor activity against certain nonenveloped viruses (e.g. poliovirus, enterovirus, HAV, rotavirus) Alcohol antiseptic has been used since 1930s and there have been no reports of alcohol resistant bacterial strains
Slide 11 - Disadvantages No residual activity Effectiveness is reduced by organic materials such as blood, mucus, excreta Volatility and Flammability﹡ Drying of skin, allergic contact dermatitis Emollients, may enhance the antimicrobial activity Toxic reactions have been reported in children after sponge bathing with isopropyl alcohol to reduce fever (1950-60s). The vapors may be absorbed through the lungs and cause acute poisoning.
Slide 12 - Iodine and iodophors
Slide 13 - Iodine and iodophors Tincture of iodine was used as early as 1839 by French war surgeon who treated battle wound during the Civil War Action: Iodine molecules rapidly penetrate the cell wall of microorganisms inactivate cell s by forming complex with amino acid and unsaturated fatty acids Impaired protein synthesis, alteration of cell membrane Most effective concentration is 1-2% Cause stinging and irritation, discoloration Must be removed with 70% alcohol after drying
Slide 14 - Iodophors: solutions in which iodine is chemically bound to polymer carrier (complexing agents of high molecular weight) e.g. polyvinylpyrrolidone Povidone-iodine = Betadine Water soluble, less staining, less irritating to skin, eye and mucous membrane Allows slow and continuous release of free iodine which determines the antimicrobial activity 10% povidone-iodine contains 1% iodine
Slide 15 - Onset: iodophors require ~2 min of contact time to allow release of free iodine after dried Broad spectrum of bactericidal activity Effective against G+, G-, tubercle bacillus , fungi, virus and certain spore forming bacteria (e.g. clostridia, Bacillus spp.) Not sporicidal in concentration used in antiseptic
Slide 16 - Rapidly neutralized in the presence of organic materials such as blood, mucus, sputum, urine, faeces, etc Antimicrobial activity is affected by pH (~6) temperature (esp sporicidal activity is markedly temperature-dependent, ↑temp → ↑activity) exposure time, conc of total available iodine, etc Greater activity when the cpd is in dry state Some residual effect If washed away, 30-60 min (except 1 study: 6 hrs) Bacteriostatic effect as long as on the skin
Slide 17 - To dry or not to dry??? Wipe the skin dry after apply the antiseptic agent to allow adherence of disposable adhesive drapes Kutarski, Grundy. To dry or not to dry? An assessment of the possible degradation in efficiency of preoperative skin preparation caused by wiping skin dry. Annuals of the Royal College of Surgeons of England (1993) vol 75, 181-185. Skin flora were obtained from subjects at 5, 30, 60 and 120 min No significant difference in the reduction of baseline count of skin flora between wiping the agent off after 30 sec of application and leaving it to dry Author suggested a longer period of application time may be worthwhile , particularly where infection would prove disastrous, e.g. implanting prostheses
Slide 18 - Povidone-iodine related chemical burns 24/F, R hand flexor tendon repair (2hrs) Preparation ran down the patient’s arm and absorbed by the padding under the tourniquet cuff
Slide 19 - 45 yrs old, epidural anaesthesia for femoro-popliteal bypass graft, gauze soaked in povidone-iodine antiseptic solution and was then covered with occlusive transparent waterproof dressing  blistered area in the shape of the gauze at the back
Slide 20 - PI after closed and prolonged exposure can damage the skin over bony prominence, pressure points, underneath an area constricted with a tourniquet dressing or bandage Recommendations: Skin must not be abraded excessively before the final skin preparation solution is applied The agent should not be allowed to pool and become trapped under the tourniquet or the torso of the patient The agent should be allowed to dry before the patient is draped.
Slide 21 - Transcutaneous iodine absorption Topical application of PI in burn patients renal failure, metabolic acidosis, hypernatraemia, hyperosmolarity, hypothyroidism Hypothyroidism in infants Skin is very thin and permeable High plasma iodine conc  transient inhibition of thyroid hormone production, ↓serum thyroxine level (Wolff-Chaikoff effect) Usu lasts only 48hrs, even if the plasma iodine level remain high Prolonged hypothyroidism esp in preterm infants Recommendations: Avoid iodine containing antiseptic in infants<3mths old Iodine should be washed off with sterile saline solution
Slide 22 - Chlorhexidine gluconate CHG 0.05% aqueous CHG 0.05% aqueous (25ml) CHG 0.015% + cetrimide 0.15%
Slide 23 - Chlorhexidine gluconate (CHG/ Hibitane) Cationic bisbiguanide Action: attachment, disruption of cytoplasmic membranes precipitation of cellular contents Broad antimicrobial spectrum Good activity against G+ Less activity against G-, fungi Poor activity against tubercule bacilli Not sporicidal In vitro activity against enveloped virus (HSV, HIV, CMV, influenza, RSV) Less activity towards non-enveloped virus (rotavirus, adenovirus, enterovirus)
Slide 24 - Introduced to Europe in 1950s and US in 1970s Bacterial resistance not common, limited to some resistant strains of Pseudomonas, Proteus, Staphylococcus aureus Antimicrobial activity is not affected by the presence of organic material ∵cationic ∴activity reduced by natural soaps, inorganic anions, nonionic surfactants, hand cream containing anionic emulsifying agents pH dependent (5-8), if pH above 9  precipitation of active component
Slide 25 - Onset: 3-5 min Good residual activity It binds to skin and mucous membrane and remain active for at least 6 hrs Not absorbed through skin , low irritancy potential Should not come into contact with eyes, meninges (neurotoxic), middle ear (ototoxicity)
Slide 26 - Allergy/ Anaphylaxis to chlorhexidine Most of the case reports from Japanese literature Application to skin, mucous membrane, chlorhexidine-sulphadiazine-coated central venous catheter (In our ICU, the antibiotic-coated central venous catheter is minocycline/ rifampicin coated)
Slide 27 - Summary
Slide 28 - Alcohol based antiseptic solution
Slide 29 - Alcohol based antiseptic solution low concentration (0.5-1%) CHG is added to alcohol (70%) Combination of Alcohol and PI Advantages: Rapid action of alcohol Persistent action of CHG Decrease the drying time
Slide 30 - Operating theatre fire and alcohol based antiseptics
Slide 31 - Case reports Barker S, Polson J. Fire in the operating room: a case report and laboratory study. Anesth. Analg. 2001; 93: 960-5 Fong E, et al. Diathermay and alcohol skin preparations – potential disastrous mix. Burns 2000; 26: 673-5 Chang BW, et al. Patient fire safety in the operation room. Plast. Reconstr. Surg. 1994; 93: 519-21 Magruder G, et al. Fire prevention during surgery. Arch. Ophthalmol. 1970; 84: 237 Briscoe C, et al. Infammable antiseptics and theatre fires. Br. J. Surg. 1976; 63: 981-3 Nicholson M. Comments. Anesth. Analg 1972; 51: 646 Waitemata Distric Health Board. Report into operating theatre fire accident, 17 Aug 2002. Witemata Distric Health Board Final Report. New Zealand; Waitemata Hospital, 2002. Toother R, et al. Surgical fires and alcohol-based skin preparations. ANZ J Surg.2001: 74: 382-385 ………………………………..
Slide 32 - 32/F, R axillary abscess for I&D under GA Diathermy is used Upon removal of surgical drapes, the underlying incontinence pad was on fire, curling up at the edges (alcohol burns with an invisible flame) large area of full thickness burn involving mainly the dependent sites where the solution had pooled soaking the incontinence pad
Slide 33 - 17/F, LSCS under epidural anaesthesia 0.5% CHG with 70% alcohol was used to prepare the abdomen Diathermy was used “woomph” noise was heard Patient complained of heat and the anaesthetist felt the heat and saw a flame/shimmer Fire was put out with fire and CS completed with birth of a healthy baby The mother suffered 12-16% full thickness burns to her inner thighs and both flanks due to pooling of alcohol-based skin antiseptic underneath the adhesive surgical drapes which produced alcohol vapour which was ignited by a spark from diathermy No oxygen supplement is given
Slide 34 - ppt slide no 34 content not found
Slide 35 - Recommendations Alcohol-based solutions are not recommended for skin preparation in the presence of ignition source ( electrocautery unit, laser) Any alcohol based solution should be clearly labelled Run-off and pooling of alcohol based antiseptic should be avoided by Using minimum amount necessary Allowing solution to dry completely prior to draping Preparation that contains dye are recommended because they make it easier to see what skin has been painted  less likely to use excessive amt and pooling Temporary absorptive sheets around the surgical site while using alcohol based solution and removed after use
Slide 36 - The drying time for skin preparation might need to be longer than the manufacturer’s recommendation (usu 2-3 min), 5 min might be preferable Electrosurgical instruments should be used on the lowest power setting to minimize the risk of sparking and excessive temperatures Don’t put diathermy and laser foot pedals side by side Don’t leave diathermy in the quiver each time after use The creation of oxygen rich atmosphere should be avoided Not to create O2 tents by placing drapes over nasal cannula or oxygen mask In event of fire , oxygen and nitrous oxide supply should be ceased immediately
Slide 37 - Alcohol vs non-alcohol based antiseptics ??
Slide 38 - 1. Surgical site infection (SSI) An audit of pre-operative skin preparative methods practised by the surgeons in Northern Ireland in 2005
Slide 39 - CDC guideline for prevention of surgical site infection, 1999 Use an appropriate antiseptic agent for skin preparation. Category IB (Strongly recommended for implementation and supported by some experimental, clinical or epidemiological studies and strong theoretical rationale) ….The iodophors, alcohol-containing products and chlorhexidine gluconate are most commonly used agents…. ….No studies have adequately assessed the comparative effects of these preoperative antiseptics on SSI risk in well-controlled, operation specific studies….
Slide 40 - The Cochrane Database of Systematic Reviews Preoperative skin antiseptic for preventing surgical wound infections after clean surgery (2004) There is insufficient evidence from randomised trials to support or refute the use of antiseptic preparation of skin at operative sites, or of one antiseptic over another. Only one RCT (Berry 1982) demonstrated a significant difference in infection rates between two different antiseptics (in favour of CHG over iodine)
Slide 41 - Berry A, et al. A comparison of the use of povidone-iodine and chlorhexidine in the prophylaxis. J. of Hospital infection 1982; 3 (1): 55-63. 371 clean operations Results: Gp1. povidone-iodine 10% in alcohol 28/176 , 15.9% Gp2. chlorhexidine 0.5% in spirit 8/195, 4.1% Limitation: Lack of extensive FU, underestimate the infection rates
Slide 42 - Hibbard, et al. Analyses comparing the antimicrobial activity and safety of current antiseptic agents: A Review. J. of infusion nursing 2005, 28 (3): 194-207. CHG+IPA provided the best immediate, persistent, cumulative antimicrobial activity Ostrander, et al. Efficacy of surgical preparation solutions in foot and ankle surgery. J. Bone joint Surg Am 87: 980-985, 2005. ChloraPrep ( 2% chlorhexidine and 70% IPA) was most effective for eliminating bacteria from the forefoot prior to surgery, when compared with DuraPrep (0.7% iodine + 74% IPA) or 3% chloroxylenol Bibbo C, et al. Chlorhexidine provided superior skin decontamination in foot and ankle surgery. Clinical orthopaedics and related research 438: 204-208, 2005.
Slide 43 - 2. Epidural catheter insertion A survey of fellows of ANZCA with a special interest in obstetric practice, about their beliefs regarding aseptic precautions for insertion of epidural catheter in labour ward in 2002
Slide 44 - Mechanisms of epidural infection: Skin flora introduced either at the time of puncture or bacterial migration along a catheter or needle tract (soiling of the back by amniotic fluid, urine and feces during labour and delivery  ↑catheter contamination) Contamination of drug or material Haematogenous spread from another site of infection Catheter colonization arising from clinicians’ and nurses’handling of syringes and solutions, via catheter hub
Slide 45 - Clevenot D, et al. Critical review of the literature concerning the comparative use of two antiseptic soultions before intravascular or epidural catheterization. Ann Fr Anesth Reanium 2003 Nov; 22(9): 787-97 Chlorhexidine in alcoholic solution seems more efficient than povidone iodine in aqueous solution in the clinical setting. The place of povidone iodine in alcoholic solution, whose performances on the healthy skin are similar to those of alcoholic chlorhexidine, is being in evaluation.
Slide 46 - Birnbach, et al. Comparison of povidone iodine and DuraPrep (iodophor in IPA) for skin disinfection prior to epidural catheter insertion in parturients. Anesthesiology 2003; 98(1): 164-9.
Slide 47 - ppt slide no 47 content not found
Slide 48 - Explanation: Alcohol provides rapid antisepsis Long lasting effect: Duraprep, when placed on skin, produces a film of disinfectant This film resists being washed away by fluids and blood
Slide 49 - Kinironsm et al. Chlorhexidine versus povidone iodine in preventing colonization of continuous epidural catheters in children. Anesthesiology 2001; 94: 239-44. Alcoholic solution of 0.5% chlorhexidine vs aqueous solution of 10% povidone iodine
Slide 50 - ppt slide no 50 content not found
Slide 51 - Catheter inserted after skin preparation with chlorhexidine were one sixth as likely and less quickly colonized as catheters inserted after skin preparation with povidone iodine
Slide 52 - Sakuragi, et al. Bactericidal activity of skin disinfectants on MRSA. Anesth Analg 1995; 81: 555-8. Most frequently detected organism in the normal human skin flora is S. epidermidis (65-69%). The prevalence of S. aureus is 1-2% but is the most common organism in epidural abscess.
Slide 53 - ppt slide no 53 content not found
Slide 54 - 3. Central line insertion Two main routes by which intravascular devices become contaminated Intraluminal contamination: consequence of improper handling of the catheter hub at the time of connection and disconnection of the administration set Most common origin after the first week of catheter placement To prevent this, strict asepsis must be observed in hub and fluid handling
Slide 55 - Extraluminal contamination: Bacterial invasion from the catheter entry site along the external surface of the catheter Bacteremia during the week following catheter placement Prevented by appropriate skin disinfection and the adoption of maximal antiseptic barriers at the time of catheter insertion
Slide 56 - Chaiyakunapruk, et al. Chlorhexidine compared with povidone-iodone solution for vascular catheter-site care: A Meta-analysis. Ann Intern Med 2002; 136: 792-801.
Slide 57 - The overall risk ratio for catheter colonization in chlorhexidine group compared with povidone-iodine is 0.49 Chlorhexidine rather than povidone-iodine can reduce the risk for catheter-related bloodstream infection by approximately 50% in hospitalized patients who require short-term catheterization.
Slide 58 - Subset analyses of aqueous and nonaqueous solutions showed similar effect sizes, but only the subset analysis of the five studies that used alcoholic solution produced a statistically significant reduction in catheter-related bloodstream infection. Few studies used chlorhexidine aqueous solution
Slide 59 - Parienti, et al. Alcholic povidone-iodine to prevent central venous catheter colonization: A randomized unit-crossover study. Crit care med 2004; 32(3): 708-713.
Slide 60 - CDC guidelines for the prevention of intravscular catheter-related infections, 2002 Disinfect clean skin with an appropriate antiseptic before catheter insertion and during dressing changes Although a 2% chlorhexidine based preparation is preferred, tincture of iodine, an iodophor, or 70% alcohol can be used. Allow the antiseptic to remain on the insertion site and to air dry before catheter insertion Allow povidone iodine to remain on the skin for at least 2 min or longer if it is not yet dry before insertion Do not apply organic solvents (e.g. acetone and ether) to the skin before insertion of catheter or during dressing changes
Slide 61 - NICE (National Institute for Clinical Excellence) guideline for infection control, 2003 Catheter site care: An alcoholic chlorhexidine gluconate solution should be used to clean the catheter site during dressing changes, and allowed to air dry. An aqueous solution of chlorhexidine gluconate should be used if the manufacturer’s recommendation prohibit the use of alcohol with the product.
Slide 62 - Conclusion Skin antisepsis plays an important role in infection control and prevention of nosocomial infection (e.g. surgical site infection, epidural infection, catheter related infection, etc) An understanding of the properties of different antiseptic solutions is needed to facilitate the selection and proper use of them.
Slide 63 - It should be remembered that antiseptic solution is only a small part of infection control. Aseptic techniques such as cap, gowning, glove, mask, proper scrubbing, etc are also very important.
Slide 64 - Best antiseptic solution???
Slide 65 - My opinion Ideal antiseptic solution does not exist The current evidence seems to favour the alcohol based antiseptic solution (esp alcoholic chlorhexidine) If alcohol based solution is avoided in view of OT fire, povidone-iodine is an alternative. The effect of aqueous chlorhexidine is unsure as most of the studies involve alcoholic chlorhexidine.
Slide 66 - The End Thanks